Bio-inspired Mechanisms for Artificial Self-organised Systems
نویسندگان
چکیده
Self-organization is a growing interdisciplinary field of research about a phenomenon that can be observed in the Universe, in Nature and in social contexts. Research on self-organization tries to describe and explain forms, complex patterns and behaviours that arise from a collection of entities without an external organizer. As researchers in artificial systems, our aim is not to mimic self-organizing phenomena arising in Nature, but to understand and to control underlying mechanisms allowing desired emergence of forms, complex patterns and behaviours. Rather than attempting to eliminate such self-organization in artificial systems, we think that this might be deliberately harnessed in order to reach desirable global properties. In this paper we analyze three forms of self-organization: stigmergy, reinforcement mechanisms and cooperation. The amplification phenomena founded in stigmergic process or in reinforcement process are different forms of positive feedbacks that play a major role in building group activity or social organization. Cooperation is a functional form for self-organization because of its ability to guide local behaviours in order to obtain a relevant collective one. For each forms of self-organisation, we present a case study to show how we transposed it to some artificial systems and then analyse the strengths and weaknesses of such an approach.
منابع مشابه
A Bio-Inspired Architecture for Division of Labour in SANETs
Division of labour is one of the possible strategies to efficiently exploit the resources of autonomous systems. It is also a phenomenon often observed in animal systems. We show an architecture that implements division of labour in Sensor/Actuator Networks. The way the nodes take their decisions is inspired by ants’ foraging behaviour. The preliminary results show that the architecture and the...
متن کاملBenefits of Bio-inspired Technologies for Networked Embedded Systems: An Overview
The communication between networked embedded systems has become a major research domain in the communication networks area. Wireless sensor networks (WSN) and sensor/actuator networks (SANET) build of huge amounts of interacting nodes build the basis for this research. Issues such as mobility, network size, deployment density, and energy are the key factors for the development of new communicat...
متن کاملRobotic Organisms - Artificial Homeostatic Hormone System and Virtual Embryogenesis as Examples for Adaptive Reaction-Diffusion Controllers
Generating artificial organisms from robotic modules (cells) is a challenging and fascinating task. In this article, we discuss the most important challenges that such systems pose to the engineer and how these challenges are met by introducing bio-inspired mechanisms into the core functionality of such robotic systems. We develop a list of key functionalities that allow such a system to overco...
متن کاملA morphogenesis model for multiagent embryogeny
This paper describes a bio-inspired method that enables the production of artificial multiagent organisms starting from a single agent. This method relies on two complementary computing approaches: (1) mimicking the functioning of segmentation genes and homeotic genes in the development of natural embryos and (2) using techniques from the evolutionary computing and the artificial embryogeny fie...
متن کاملOnce More Unto the Breach ... towards Artificial Homeostasis?
The field of biologically inspired computing has generated many novel, interesting and useful computational systems. None of these systems alone is capable of approaching the level of behaviour for which the artificial intelligence and robotics communities strive. We suggest that it is now time to move on to integrating a number of these approaches in a biologically justifiable way. To this end...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Informatica (Slovenia)
دوره 30 شماره
صفحات -
تاریخ انتشار 2006